Ensemble Approach to Extract Chemical Named Entity by Using Results of Multiple CNER Systems with Different Characteristic

نویسندگان

  • Masaharu YOSHIOKA
  • Thaer M. DIEB
چکیده

We propose a novel ensemble approach chemical named entity recognition (CNER) tool that uses different CNER tools such as OSCAR4 and ChemSpot with different characteristics by using machine learning (ML) technique. Since this tool may identify typical errors of one CNER by using other tools’ output, our system outperforms ChemSpot (ML-based) and OSCAR4 (rule-based) in original setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination

Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...

متن کامل

Extraction of Chemical and Drug Named Entities by Ensemble Learning Using Chemical NER Tools Based on Different Extraction Guidelines

Chemical named-entity recognition (chemical NER) is the task of extracting chemical information and chemical-related entities such as drug names and source materials from text in several domains such as bioinformatics and nanoinformatics. There have been several attempts to construct corpora for handling such chemical-related information based on different corpus-construction guidelines. Even t...

متن کامل

روشی جدید جهت استخراج موجودیت‌های اسمی در عربی کلاسیک

In Natural Language Processing (NLP) studies, developing resources and tools makes a contribution to extension and effectiveness of researches in each language. In recent years, Arabic Named Entity Recognition (ANER) has been considered by NLP researchers due to a significant impact on improving other NLP tasks such as Machine translation, Information retrieval, question answering, query result...

متن کامل

A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features

Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...

متن کامل

Comparison of different strategies for utilizing two CHEMDNER corpora

To identify chemical entities and drug names in patent according to CHEMDNER patent task-CEMP subtask, we use machine learning technique to construct a chemical named entity recognition (CNER) system. It is desirable for machine-based CNER system to have large training examples. Two CHEMDNER corpora have been developed. One is the corpus for the patent task and the other is the CHEMDNER corpus ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013